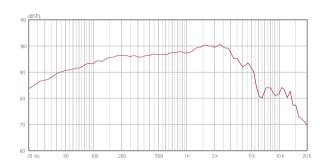
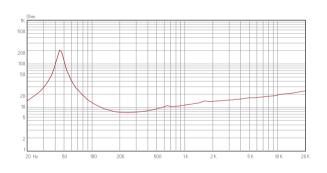
The Manufacturer of Professional Speaker

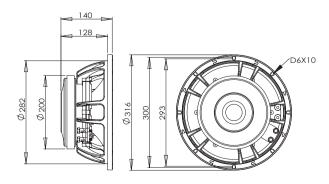
K12N480

- 960 Watt Max Power
- 88.7mm(3.5inch) voice coil
- 45Hz to 2.5KHz frequency response
- 97dB 1W@1m sensitivity
- Ferrite magnet structure




Specifications

Model		K12N480
Nominal diameter	in.	12
Power handling capacity	W(AES)	480
Max power	Watts	960
Nominal impedance	Ω	8
Sensitivity (1W/1m)	dB	97
Frequency range	Hz	45-2.5
Voice coil diameter	mm/in	88.7/3.5
Fs	Hz	45
Re	Ω	5.5
Qms		6.80
Qes		0.27
Qts		0.26
Vas	L	63
Mms	gr	77
Cms	mm/N	0.16
BL	Tm	21.5
Le	mH	0.23
Xmax	mm	6.5
пO	%	2.1
Sd	cm ^ 2	530
Overall diameter	mm	316
Bolt circle diamete	mm	293-300
Baffle cut-out diameter	mm	282
Overall depth	mm	140
Net weight	Kg	8.2


- AES power is measured with 6dB crest factor continuous pink noise in 2 hours duration.
- Max power is defined as 3dB higher than the nominal rating.
- Sensitivity is measured at one meter at 2.83V and 8 ohm nominal impedance.
 All measurement of the speaker is done after a sufficient high level of 20Hz sine wave test.
- Xmas is defined at the BL drops by 18% of the original figure.

Frequency Response and Impedance Magnitude Curve

Dimension Drawings

