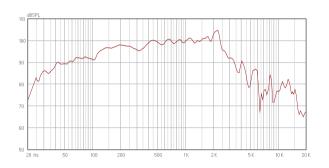
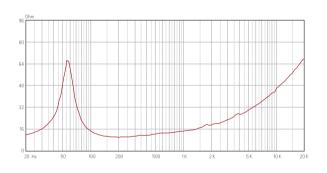
The Manufacturer of Professional Speaker

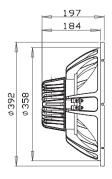
D15G612N

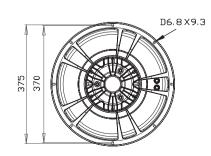
- 1300 Watt Max Power
- 99.5mm (4 inch) voice coil
- 45Hz to 2kHz frequency response
- 99dB 1W@1m sensitivity
- Neodymium magnet structure




Specifications

Model		D15G612N
Nominal diameter	in.	15
Power handling capacity	W(AES)	650
Max power	Watts	1300
Nominal impedance	Ω	8
Sensitivity (1W/1m)	dB	99
Frequency range	Hz	45-2K
Voice coil diameter	mm/in	99.5/4
Fs	Hz	46
Re	Ω	5.0
Qms		2.25
Qes		0.34
Qts		0.29
Vas	L	113
Mms	gr	114
Cms	mm/N	0.10
BL	Tm	22.0
Le	mH	0.78
Xmax	mm	6.5
nO	%	3.2
Sd	cm ^ 2	881
Overall diameter	mm	392
Bolt circle diamete	mm	370-375
Baffle cut-out diameter	mm	358
Overall depth	mm	197
Net weight	Kg	6.6


- AES power is measured with 6dB crest factor continuous pink noise in 2 hours duration.
- Max power is defined as 3dB higher than the nominal rating.
- Sensitivity is measured at one meter at 2.83V and 8 ohm nominal impedance.
 All measurement of the speaker is done after a sufficient high level of 20Hz sine wave test.
- Xmas is defined at the BL drops by 18% of the original figure.


Frequency Response and Impedance Magnitude Curve

Dimension Drawings

